segunda-feira, 28 de novembro de 2016

segunda-feira, 3 de dezembro de 2007

Site

http://efisica.if.usp.br/eletricidade/basico/corrente/lei_ohm_resist_eletrica/

Comentário 1

Nas instalações elétricas residenciais, a corrente elétrica é fornecida com diferença de potencial de 110 e 220 volts. Com essas diferenças de potencial os choques não oferecem nenhum perigo de vida. Há casos de pessoas que morrem com um choque desses, mas, nesses casos as pessoas são doentes, em geral cardíacas. Nesses casos a morte não é produzida pela eletricidade, mas, pelo abalo físico que a pessoa sofre; e esse abalo poderia ter sido provocado por uma outra causa qualquer, como um susto, uma queda, etc..

Efeitos principais da corrente elétrica

A carga elétrica em movimento, isto é, a corrente elétrica, possui certas propriedades que a carga elétrica em repouso não possui. As mais importantes são:

1. Efeito térmico

Quando a corrente elétrica passa em um condutor, produz-se calor: o condutor se aquece. Este fenômeno, também chamado efeito Joule, será estudado no Capítulo 7.

2. Campo magnético produzido pela corrente elétrica

Quando a corrente elétrica passa em um condutor, ao redor do condutor se produz um campo magnético. A corrente elétrica se comporta como um ímã, tendo a propriedade de exercer ações sobre ímãs e, sobre o ferro. Este fenômeno será estudado no Capítulo 14.

3. Efeito químico

Fazendo-se passar uma corrente elétrica por uma solução de ácido sulfúrico em água, por exemplo, observa-se que da solução se desprende hidrogênio e oxigênio. A corrente elétrica produz, então, uma ação química nos elementos que constituem a solução. Esta ação, que se chama eletrólise, será estudada no Capítulo X.

4. Efeitos fisiológicos

A corrente elétrica tem ação, de modo geral, sobre todos os tecidos vivos, porque os tecidos são formados de substâncias coloidais e os colóides sofrem ação da eletricidade. Mas é particularmente importante a ação da corrente elétrica sobre os nervos e os músculos.

Na ação sobre os nervos devemos distinguir a ação sobre os nervos sensitivos e sobre os nervos motores. A ação sobre os nervos sensitivos dá sensação de dor. A ação sobre os nervos motores dá uma comoção (choque).

A corrente elétrica passando pelo músculo produz nele uma contração.

Choque elétrico – Quando uma corrente elétrica passa pelo nosso corpo, a ação sobre os nervos e os músculos produz uma reação do nosso corpo a que chamamos choque. A intensidade do choque depende da intensidade da corrente. Quanto maior a intensidade da corrente, mais forte será o choque. Quando uma pessoa está com o corpo molhado, a resistência oferecida à passagem da corrente diminui; então a intensidade da corrente aumenta e o choque é mais intenso.

Nas instalações elétricas residenciais, a corrente elétrica é fornecida com diferença de potencial de 110 e 220 volts. Com essas diferenças de potencial os choques não oferecem nenhum perigo de vida. Há casos de pessoas que morrem com um choque desses, mas, nesses casos as pessoas são doentes, em geral cardíacas. Nesses casos a morte não é produzida pela eletricidade, mas, pelo abalo físico que a pessoa sofre; e esse abalo poderia ter sido provocado por uma outra causa qualquer, como um susto, uma queda, etc..

A corrente elétrica

Nos fenômenos estudados até agora supusemos a carga elétrica em equilíbrio nos condutores. Mas são muito importantes os fenômenos em que a carga elétrica se desloca no interior do condutor. Chama-se corrente elétrica à carga elétrica em movimento.

Corrente elétrica

Para que a carga elétrica se desloque entre dois pontos de um condutor é necessário que exista entre esses dois pontos uma diferença de potencial. Existem muitos dispositivos que produzem essa diferença de potencial. Esses dispositivos são chamados geradores.

Como exemplo de geradores veremos os seguintes.

1o) Suponhamos que dois pedaços de metal de naturezas diferentes, a e b, sejam mergulhados em uma solução de ácido sulfúrico em água (fig.112). Unindo-se os dois pedaços de metal por um condutor c, circulará carga elétrica através desse condutor e da solução. O conjunto dos dois pedaços de metal com a solução é um gerador, porque produz diferença de potencial entre os extremos do condutor c. Esse gerador é chamado pilha hidroelétrica, ou simplesmente pilha.
gerador

Figura 112


2o) Suponhamos um ímã com a forma de ferradura. Se entre os polos do ímã fizermos girar um condutor fechado c, por esse condutor circulará carga elétrica. Este é um outro tipo de gerador, chamado gerador mecânico ou dínamo. Na figura 113 supomos que o condutor c gire ao redor do eixo AB contido no plano do papel.
gerador mecânico

Figura 113

3o) Consideremos dois pedaços de cobre AB e CD, ligados a um pedaço de ferro BC, com as uniões B e C mantidas a temperaturas diferentes, e (fig.114). Ligando-se um condutor c entre A e D, circulará uma carga elétrica por todos esses condutores. As três peças metálicas com as uniões B e C à temperaturas diferentes são, portanto, um gerador chamado pilha termoelétrica.

No decorrer do curso daremos noções gerais a respeito desses tipos de geradores.

pilha termoelétrica

Figura 114

Diferença de potencial

Se em cada ponto A do condutor há um campo , também há um potencial V (fig.117). Relativamente aos potenciais, fazemos em Eletrodinâmica a seguinte hipótese simplificadora: admitimos que todos os pontos de uma mesma secção transversal do condutor tenham o mesmo potencial. Assim, admitimos que na secção todos os pontos tenham o mesmo potencial que o ponto B.

diferença de potencial

Figura 117

Com essa hipótese, para medirmos a diferença de potencial entre duas secções transversais e basta medirmos a diferença de potencial entre um ponto qualquer B de e um ponto qualquer C de . É por isso que na prática podemos dizer indiferentemente diferença de potencial entre dois pontos do condutor ou entre duas secções transversais do condutor.

É evidente que em Eletrodinâmica também vale a seguinte relação, que deduzimos em Eletrostática, para o trabalho realizado no deslocamento de uma carga q do potencial ao potencial :

Volt

A unidade de potencial elétrico é Joule por Coulomb.

Esta unidade é tão freqüênte na física que lhe foi dado o nome especial de "Volt". Logo, um Volt é igual a um Joule por Coulomb.